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Abstract

A unique online parsing system that produces partial-credit scoring of students’
constructed responses to mathematical questions is presented. The parser is the core of
a free college readiness website in mathematics. The software generates immediate
error analysis for each student response. The response is scored on a continuous scale,
based on its overall correctness and the fraction of correct elements. The parser scoring
was validated against human scoring of 207 real-world student responses (r = 0.91).
Moreover, the software generates more consistent scores than teachers in some cases.
The parser analysis of students’ errors on 124 additional responses showed that the
errors were factored into two groups: structural (possibly conceptual), and computational
(could result from typographical errors). The two error groups explained 55% of students’
scores variance (structural errors: 36%; computational errors: 19%). In contrast, these
groups explained only 33% of the teacher score variance (structural: 18%; computational:
15%). There was a low agreement among teachers on error classification, and their
classification was weakly correlated to the parser’'s error groups. Overall, the parser’s
total scoring closely matched human scoring, but the machine was found to surpass
humans in systematically distinguishing between students’ error patterns.

Keywords: parser, assessment, automated partial-credit scoring, computer grading,
error analysis, online learning, artificial intelligence, natural languages.
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Introduction

Students preparing to take college-level mathematics courses are exhibiting a critical shortage of higher-
level skills. This nationwide problem is partly attributable to an over-reliance on memorization. Despite the
best efforts of many mathematics teachers, the problem is still confounded by using Multiple-Choice (MC)
questions in all high-stakes mathematics assessment tests (e.g., for high school graduation or college
admission), MC questions have pre-determined correct or incorrect answers, hence mainly focus on
retention (Becker & Shimada, 2005), In contrast, problems that allow students to provide their own
constructed responses are more challenging, allow multiple variations of the correct answer(s), and lead
students to see the beauty and creativity inherent in mathematics (Becker & Shimada, 2005; Jarrett,
2000; Moon & Schulman).

This article presents an innovative mathematical expression parser (U.S. patent pending; Livne, Livne, &
Wight, 2007a) that automatically scores students’ constructed responses to mathematical questions at
the core of a free college readiness website (http://ruready.net). Each response is compared to an
instructor-provided reference expression; each response element is identified as correct vs. missing,
unrecognized, wrong, or redundant, and the response is assigned a partial-credit score on a 0-100 scale
in real-time. The score reflects both the overall response correctness and the fraction of correct elements
identified in the response.

The parser scoring agreed with human teacher scoring to a very high degree of accuracy and was found
to be as consistent as human scoring. The parser performed well even when the constructed response
assessment was not clear-cut (either totally wrong or totally correct), but lay in a “gray area” that required
human expertise to award meaningful partial-credit.

The parser was further used to score additional real-world students’ responses to pre-Calculus questions.
The results indicated that students’ errors were factored into two groups: structural vs. computational,
reflecting the parser’s ability to distinguish between different error patterns beyond human scoring.

Literature Survey

Constructed responses to mathematical questions have been recommended as an effective way to
enhance students’ ability to organize and communicate knowledge in their own way, as opposed to
Multiple-Choice (MC) questions (Becker & Shimada, 2005, Jarrette, 2000; Kristin et al., 2005; National
Science Teachers Association, 2005; Pehkonen, 1997). Through constructed responses, students’
incorrect responses are normally awarded partial-credit, whereas MC responses are scored only as
correct or incorrect; MC questions invite students to resort to guessing or to solving problems backward,
thereby introducing large measurement errors. This limitation not only discourages students from gaining
a deep conceptual understanding in mathematics (Mclintosh, & Jarrett, 2000; National Research Council,
1999; Paul, 1993), but further leads to discrepancies between human teacher grading and machine
grading of the same student response. Human partial-credit scoring of constructed responses reflects
the number of learning points that the student has achieved for an answer that is not fully correct; it
especially forgives small algebraic or arithmetical errors (Beevers & Paterson, 2002). In contrast,
machines face difficulties in extracting such implicit information from the student’s response, and score
the final answer only as correct or incorrect, disregarding the range of “intermediate responses” (Ashton,
Beevers, Korabinski, & Youngson, 2006; Bennett, Steffen, Singley, Morley, & Jacquemin, 1997).
Moreover, many of the current automated scoring systems exhibit significant scoring errors, as indicated
by 35% of testing offices in 23 states (CNN, 2007).

Several programs offer solutions to automatic scoring of constructed mathematical responses. In Praxis I:
Online Academic Skills Assessments (Educational Testing Service, 1997), constructed responses to
mathematical questions were matched with either one or a small number of pre-specified answers. The
response was dichotomously scored by literally matching it against each correct answer, much like
multiple choices. Bennett et al. (1997) developed questions that have a single correct answer that may,
however, take a large number of forms. Responses were still only scored as correct or incorrect. McGuire,
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Youngson, Korabinski, and McMillan (2002) offered another type of partial-credit scoring for automated
assessment tests that was based on the number of solution steps taken by the learner. For each of four
pre-defined steps, the student provided a single solution and either received full credit if the step was
solved correctly, or no credit if the step’s solution was incorrect. The total score was the sum of correct
step scores. None of the scoring techniques cited above has been validated to be robust, and none
agreed with human scoring across a wide range of responses; further, these techniques generated only a
final score and could not identify and/or classify specific error types.

To address these challenges, the University of Utah created RUReady, a free online self-regulated
learning and assessment website (http://ruready.net) intended to improve student college-readiness. The
core of the software is a mathematical expression parser — a novel analyzing tool that generates
comprehensive error analysis and real-time automated partial-credit scoring for each student response.
To determine whether the RUReady parser is a valid tool for automated partial-credit scoring in
mathematics, two research questions were posed: (1) Can a computer closely match human graders?
and (2) Can a machine surpass human graders by distinguishing between different types of errors?
Accordingly, this article is divided into three sections. First, the RUReady parser analysis and its scoring
algorithms are described (Method). Secondly, the validation of the parser scoring compared against
human teacher scoring is reported (Study 1). Thirdly, the ability of the parser scoring model to distinguish
between different students’ error-patterns is evaluated (Study 2). Finally, the results are summarized and
discussed, leading to conclusions, limitations, and implications for the mathematics teaching community
and for the role of artificial intelligence and natural languages in education.

Method
RUReady Parser Analysis Algorithm

The RUReady learning program is based on the theory of learning from error performance (Ohlsson,
1996) and on evidence that error patterns lead to conceptual misunderstandings and lack of proper
problem-solving strategies (Babbitt, 1990; Sleight, 2003). During learning sessions, students are asked
to provide constructed responses to mathematical questions. The site’s software invokes a parser that
analyzes the students’ responses, generates immediate feedback on their errors, and provides accurate
partial-credit scoring as well. (A parser is an object that recognizes the elements of a language and
translates each element into a meaningful result).

The parser requires two inputs:

1. Reference: a keyboard-typed string representing the correct answer to the mathematics question.
It is provided by instructors and stored in a database.

2. Response: a keyboard-typed string representing a number, mathematical expression or equation.
It is provided by a student in real-time.

The parser’s output includes a detailed analysis of the student’s response, consisting of three successive
phases:

1. Matching: directing comparison of the elements in the reference and response strings, and
reporting whether the response is a legal expression that adheres to standard arithmetic and
logical syntax rules.

2. Numerical Evaluation: deciding and reporting whether the response and reference are
mathematically equivalent.

3. Analysis: error flagging, i.e. classifying the response’s individual elements into correct, missing,
unrecognized, wrong, and redundant elements.

Parsers are widely used for matching purposes only (Phase 1). The RUReady parser design introduces
three additional innovative ideas: (a) numerically evaluating both the reference and response
expressions for both real and complex variable values to decide whether they are equivalent (Phase 2).
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This approach is simpler, more reliable and more general than computer symbolic algebra systems for
the considered educational applications; it also allows a user-defined tolerance in comparing the
expressions. Numerical evaluation to verify expression equivalence has been employed before, for
example WIMS (Gang, 1999); however, the specific algorithm for choosing sample values and for testing
numerical equivalence is new, and was also verified to be robust on a large set of student responses; (b)
comparing the response syntax tree in relation to the specific reference syntax tree, rather than reducing
both to absolute normal forms and comparing the normal forms; (c) generating meaningful error flagging
(Phase 3), using Approximate Tree Pattern Matching (ATPM) (Shasha, 1997; Wang, Zhang, Jeong, &
Shasha, 1994). The ATPM approach computes the edit distance, which is the minimum number of edit
operations required to transform the response syntax tree to the reference syntax tree. A byproduct of
the minimization algorithm is a nodal mapping, which pairs each response tree node with a reference
tree node. Depending on the syntax and complexity of the expressions, some nodes may have no
counterpart. Each response element (a number, operation, variable or function) is classified accordingly
and highlighted as correct, missing, unrecognized, wrong, or redundant. For more details, see Livne,
Livne, and Wight, (2006). An interactive parser demo is available online at http:/ruready.net/demo,
where a user can provide a reference string and a proposed student response string, and view images of
the generated parser analysis and scoring. The parser is a powerful stand-alone tool to detect students’
errors, as well as the backbone of the overall RUReady learning and assessment system.

Automated Partial-Credit Scoring Model

Based on the parser’s error analysis, each student response is assigned a partial score on a continuous
scale of 0-100, as recommended by the National Assessment Governing Board (2004). The score is a
weighted sum of two components:

1. Overall response correctness (right or wrong) determined by the numerical evaluation of the
mathematical expression in Phase 2. The response and reference strings must be equal to within
a user-defined tolerance (a 10° relative tolerance is normally sufficient for educational
applications). This component assumes a binary value a: a=1 if the response is equivalent to the
reference and a=0 otherwise (see the first component in Figure 1).

2. Fraction of correct elements, which is the number of correct response elements (C) divided by the
total number of correct (C), missing (M), unrecognized (U), and wrong (W) elements (identified in
Phase 3; redundant elements are not counted as errors. See the second component in Figure 1).

* * C
S=06%a+(100- 0) C+M+U+W
N J
L v
Overall Fraction of
correctness correct elements

Figure 1. The Parser Scoring Model defines the response score
as a convex combination of the two components.

The precise weighting, 0 < 6 < 100, of the two components was optimized in the validation study
described below. The scoring formula was found to be generally applicable and robust for a large set of
real-world constructed responses to questions in a college pre-Calculus course. It replaces current
content-dependent rubrics, which require complicated development and parameter tuning for specific
questions. The parser scoring model is described in detail in Livne, Livne, and Wight (2007b).

The same scoring algorithm can also provide partial scoring for MC questions: each choice is regarded
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as a prospective constructed response, so that partial-credit is also assigned to each distracter
depending on the error types it contains. Furthermore, when designing a new question, a teacher can
use the parser score in creating proposed distracters corresponding to common student misconceptions.
Given that MC questions in all other assessments are scored as correct/incorrect (for example, see
Villamide et al. 2006), the RUReady continuous scale provides a substantial improvement over the
current multiple-choice testing framework (Livne et al., 2007b).

Results

Study 1: Can a Computer Closely Match Human Graders: External Validation of the Parser Scoring
Model?

This study was designed to determine whether the parser model could closely match human partial-
credit scoring, thereby externally validating its scoring algorithm. The parser scoring model was
compared directly with human teacher grading, as recommended by literature (Bennett & Bejar, 1998).

To that end, three mathematicians, who were both University mathematics faculty and also teachers of
college-level mathematics courses in high schools, were asked to independently score (on a scale of 0-
100) a sample of 207 real-world mathematical constructed responses along with their matched questions.
The responses were collected from high school and pre-college students that had worked through the
RUReady site. In addition to the total score, the scorers also indicated the number of structural errors and
the number of computational errors in each response. Because the number of different scored responses
in this study was relatively large (N = 207), only three scorers were used. Notwithstanding, this meets the
literature recommendation of three or more graders to ensure a reliable measure of scoring twenty or
more responses (Seigel, & Castellan, 1988). To examine the degree of agreement among teachers on
scoring the 207 responses, Kendall's coefficient of concordance, which is considered the most
appropriate measure for more than two scorers, was used (Gibbons, 1993; Seigel & Castellan, 1988).
The results indicated that there was strong agreement among the three human graders on scoring each
response; the overall Kendall's coefficient of concordance (Kendall, 1948) was W = .890, p < .0001,
regardless of the level of difficulty of the questions.

Stepwise linear regression was used to predict the human score by the two parser scoring model
components. Interestingly, the fraction of correct elements explained 77.3% of the human scoring
variance, whereas the overall correctness contributed only an additional 5.8%. The optimal weights of the
two scoring components in Figure 1 were (by definition) their loading coefficients in the final regression
(6~30, 100-6=70 for the overall correctness and fraction of correct elements, respectively); with these
weights, the parser scoring model explained an impressive 83.1% (the sum of 77.3% and 5.8%) of the
human scoring variance, which is equivalent to a human-parser score correlation coefficient of r =.970, p
<.0001. See Table 1.

Table 1. Stepwise Regression Analysis of Predicting Human Teacher Scoring by the RUReady Parser
Scoring Components

Parser Component Correlation R2 = Variance Explained Optimal
Predictor Coefficient r (cum.) (cum.) Loading
Fraction of correct 0.882 77.3% 68
elements

Overall correctness 0.910 83.1% 32

The concordance of the human and parser scoring scales was examined by the regression line slope. As
illustrated in Figure 2, the slope was 0.97, indicating that a parser score of 100 corresponded to a human
score of 97. Thus, the two scales almost coincided. Overall, the results indicated that the parser scoring
model closely matched human scoring, ensuring that every student response in the RUReady site is
automatically awarded accurate partial-credit, similar to what a human teacher does.
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Figure 2. Scatter-plot and regression line of RUReady parser scoring (horizontal axis) versus
human teacher scoring (vertical axis) of mathematical constructed responses.

To determine whether the parser scoring was a consistent measure, it was compared against the
average and variation in human scoring. First, the standard deviation (SD) of the three teacher scores
was computed for each of the 207 responses. Then, the difference (PD) between the parser score and
the average teacher score was computed for each of these responses. The consistency of the two
scoring methods (human and computer) was compared by means of a paired sample t-test on the
difference between the mean SD and the mean PD. Because the correlation between the parser and
human scorings was high, it was anticipated that the two scoring methods would be consistent.

As expected, the difference between the two means was not significant across all 207 responses (MSD
= 9.923, SD = 12.291 and MPD = 10.583, SD = 15.045, {0 = -.618, p = .537). This implied that the
parser scoring algorithm matched human teacher scoring and exhibited equal consistency and reliability.

To illustrate the human-parser scoring match, consider the question:

“What is the point-slope equation of the line perpendicular to the line
2x - 9y = 22 and containing the point (27,-19)?".

The correct answer is y + 19 = -(9/2)(x-27) ,whereas the student’s response was y + 19 = (2/9)(x-27).
This response was scored 70, 67 and 50 by the three teachers, while the parser's score was 55 (30
times the overall correctness (0) plus 70 times the fraction of correct elements, which was 0.786).

While the teacher mean score was 62.3 with a relatively large standard deviation (SD =10.8), the
machine scoring was less than one SD away from the teacher mean score. When asked how they
assigned their scores, the teachers explained that the student confused the concepts of parallel and
perpendicular lines, albeit correctly using the point-slope formula. Based on this heuristic, a score around
50 (one correct concept out of two) would be expected. Nevertheless, each teacher penalized and
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scored the student’s response differently. This illustrates that the parser scoring was meaningful even
when the score assignment was not clear-cut (either a totally wrong or a totally correct response), but lay
in a “gray area” that required human expertise to award meaningful partial-credit.

Study 2: Can a Machine Surpass Human Teacher Scoring: Automatic Detection of Student’s Structural
versus Computational Error Patterns?

Based on the validity and reliability of the parser scoring model described above, a second study was
conducted to ascertain whether the different error types detected by the parser corresponded to different
error patterns exhibited by students. Specifically, 124 additional real-world students’ constructed
responses to pre-Calculus questions were analyzed and scored by the parser. To examine the internal
structure of the error types and decide whether they could be clustered, exploratory factor analysis with a
varimax rotation method was conducted (Hair, Anderson, Tatham, & Black, 1995). It yielded two distinct
factors (error groups) that explained an impressive 76% of the original error elements’ joint variance: (1)
Error Group 1 included the missing and unrecognized elements, with factor loadings of .768 and .822,
respectively; (2) Error Group 2 included wrong elements only, with a factor loading of .986. Moreover, to
examine whether the two Error Groups’ average frequencies were different, a paired sample t-test was
used. The result indicated that the mean percentage of elements in Error Group 1 of the total number of
response elements (20.242%) was significantly higher than that of Error Group 2 (10.747%) across all
124 responses (t123 = -4.380, p < .0001). Cohen’s d, which is the appropriate effect size coefficient for a
t-test (Cohen, 1988) was .661, indicating that the two Error Groups were indeed distinct for a relatively
small response sample size (a value of d =.5 is considered a medium effect size; see Cohen, 1992).
Taken together, these results indicated that two distinct types of errors were detected in students’
responses.

To further investigate whether the two error groups identified by the parser had different effects on
predicting the score of students’ responses, stepwise linear regression was performed. The results
indicated that missing and unrecognized elements combined (Error Group 1) explained 36% of the
student score, representing structural errors that might reflect conceptual errors, while wrong elements
(Error Group 2) contributed only 19%, representing computational errors that could also be a result of
typographical errors. Taken together, the two error patterns explained 55% of the students’ scores,
which was equivalent to an error-score correlation of r = .74, p < .0001. The correct parts explained 45%
of the scores’ variance. These findings supported Orton’s (1983) results that Calculus responses of
college students were classified into ‘structural’ versus ‘executive’/computational errors. Structural errors
were those "which arose from some failure to appreciate the relationships involved in the problem or to
grasp some principle essential to solution (Orton, 1983, p. 236)." In contrast, ‘executive’ errors involved
failure to carry out computational manipulations, though the principles involved may have been
understood (Orton, 1983). Moreover, our results were also in line with previous postulations that student
error patterns generally fall under two categories: bugs and slips (Acton, Johnson, & Goldsmith, 1994,
Ginsberg, 1987). Bugs represent systematic conceptual errors that are consistently made by a student
and in our study could possibly correspond to Error Group 1. Slips represent minor deficiencies in
applying the correct rules and techniques to the solution process that presumably correspond to Error
Group 2.

To determine whether teachers used similar error detection heuristics to give partial-credit scores,
stepwise regression was also conducted to predict human teacher scores using the structural and
computational Error Groups. The results showed that Error Groups 1 and 2 explained 18% and 15%
of the human scoring variance, respectively. Taken together, the two Error Groups explained 33% of
the variance in the teacher scores, which corresponded to an error-score correlation of r = .58, p <
.0001. These results lead to two assertions: (a) although the parser and teacher fotal scores
concurred, teachers penalized students almost evenly on structural (account for 18% of their total
score) and computational errors (15%); the parser penalized students twice as much on structural
errors (36%) than on computational errors (19%); (b) teachers focused more on correct parts of
students’ responses (67%) and less (33%) on students’ error patterns; in contrast, the parser gave
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similar weights to both the correct and erroneous parts of the student’s response (45% and 55%,
respectively, as cited above).

In particular, human graders ran into difficulties when asked explicitly to classify students’ errors into
structural and computational error groups (patterns), similar to those generated by the parser. There was
a very low agreement among the teachers on error classification, and each teacher came up with different
error grouping (W = .106 and W = .021, p = .012 for the structural and computation error groups,
respectively). Moreover, the correlation between the mean number of structural errors defined by the
teachers and the sum of missing and unrecognized elements detected by the parser, was relatively low (r
= .456, p < .0001); the corresponding correlation for the computational error group was not significant at
all. The results indicated that human graders failed to establish a systematic heuristic to detect error
patterns in students’ responses. In contrast, the parser provided a consistent mechanism to distinguish
between the two main error types in students’ responses.

Discussion, Limitations, and Implications

The current article describes a novel parsing system that automatically scores students’ constructed
responses to mathematics questions, based on the errors in each response. This computerized scoring
provides a good match to human grader scoring, and goes beyond human graders in distinguishing
between two types of error patterns: structural possibly reflecting conceptual errors and computational
possibly resulting from typographical errors.

The findings provide evidence that the parser generates partial-credit scores to constructed responses in
mathematics that are very similar to human-generated scores. This indicates that the parser scoring
model can replace human scoring, thus, positively answering the first research question posed in this
article, viz., Can a computer closely match human graders? The machine scoring was at least as
consistent as humans, owing to a uniform scoring formula as opposed to frequent inter-teacher scoring
deviations. Furthermore, it generated automatic partial-credit scoring at a much higher speed than
manual grading by humans. The authors anticipate that these advantages of the parser scoring will be
more pronounced in a larger sample of human scorers as well as in larger response samples.

Furthermore, although the overall scores given by the parser and human graders were highly correlated,
the results support the postulation that the parser can further unveil human scoring errors and distinguish
between two main types of student error patterns, two areas in which human graders fall short. The
value of engaging students in the analysis of their errors has long been recognized in computer
programming, where students are expected to debug their incorrect programs (Melis, 2004). Similarly,
the parser's unique capability to generate error feedback by highlighting correct versus erroneous
elements (i.e., incorrect, missing, unrecognized or redundant) for each response, stimulates students to
figure out what went wrong, organize error patterns (Livshits & Zimmermann, 2005; Melis, 2004), and
find their corrections (Babbit, 1990). Through analyzing their errors, students develop a deep
understanding of why the answer was wrong and what the mathematical concepts behind it were, rather
than focus on how the problem could be solved with a rule or formula (Melis, 2004, 2005; Oser &
Hascher, 1997; Russell, 2007). Error feedback was found to be the most reliable mode to reduce
common errors in mathematics and to increase students’ understanding and performance (Koedinger &
Anderson, 1990; Larkin & Simon, 1987; Melis, 2004; Novick, 2001). In contrast, human graders often
tend to largely avoid pointing out and grading individual error patterns; instead, they focus more on what
the student knows, relying on the traditional yet disputable behaviorist view that errors could interfere
with fixing the correct result in the student’s mind (Miller, 1983). Accordingly, it is concluded that the
parser can surpass human grading in detecting errors patterns, as hypothesized in the second research
question.

Overall, the answer to the title question is YES: Automated machine scoring can surpass hand-grading
of constructed responses and error patterns in mathematics.
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The RUReady parser is still limited to scoring only the final answer, as opposed to examining all of the
intermediate steps. This limitation is particularly evident when the final answer is a number, which might
nevertheless be a complex function of several intermediate stages that reflect back on errors made
during the problem-solving process. Future plans call for parsing intermediate solution stages, as well as
inferring on different types of errors made during the whole solution process. This will allow the detection
of the sources of different error types, thereby identifying the conceptual versus computational or
typographical errors. Moreover, creative open-ended problems that have multiple solution paths but only
one final answer could then be employed (Becker & Shimada, 2005), revealing the level and the quality
of student mathematical understanding (Magone, Cai, Silver, Wang,1994; Moon & Schulman, 1995). The
authors also plan longitudinal studies to investigate the capability of the RUReady assessments to
predict student success in specific college-level courses in mathematics.

Notwithstanding, the parser evidently illustrates that natural languages and artificial intelligence
principles can be used successfully to detect student error patterns. Additionally, the RUReady parser
offers several advantages over the limitations of multiple-choice questions in automated assessment
tests. It provides automatic, immediate partial-credit scoring of computerized mathematical exams, which
need not be hand-graded as with other systems. The exclusive use of questions that require constructed
responses also fosters the development and measurement of creative problem-solving skills. The same
technology enables the construction of online learning tools that generate immediate automated error
feedback to guide student learning in real-time. It provides a tool for teachers to design concept-based
instructional units tailored to student’s individual misconceptions. Further, it allows teachers to construct
multiple-choice mathematical questions that are scored on a continuous scale, much like constructed
responses. Future studies could explore the optimal distribution for MC continuous scores, as described
in more details elsewhere. (Livne, et al., 2007b).

In conclusion, the RUReady parser constitutes an important tool to enhance college readiness in
mathematics on a broad scale. By taking full advantage of the low cost per student of machine scoring, it
is now feasible to construct automated online learning tools to help level the playing field for
underrepresented student populations and promote diversity in science, mathematics and engineering
disciplines.
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